Contents

Chapter 1: Introduction to Diagnostic Imaging Techniques in Ophthalmology

Samuel Boyd, MD

- Optical Coherence Tomography 1
- Optical Properties of Tissue 1
- Interpretation of OCT Images 1
- Corneal Topography 2
- Optical Properties of the Cornea 2
- Interpretation of Topographic Maps 3
- Surface Curvature Measurements in Topography 4
 - Curve/Power Map 4
 - Elevation Map .. 4
 - Relative vs. Absolute Scales 4
- Wavefront Technology and Customized Ablations .. 5
- Ultrasound in Ophthalmology 6
- The Role of the Fluorescein Angiogram 7
- Fluorescein Angiography and Filter Basics 7
- Interpretation of Fluorescein Angiography 8
- Electroretinogram and Electrocochleogram 9
- Visual Evoked Potentials 10
- Confocal Microscopy 11

Chapter 2: Corneal Topography

- Curvature of the Cornea 13
- Keratometry ... 13
- Keratoscopy ... 14
- Computerized Videokeratography 14
- ORBSI-CAN .. 14
- Paraxial Optics .. 15
- Raytrace or Geometric Optics 15
- Elevation .. 15
- To Summarize ... 15
- ORBSI-CAN I and II 15
- Specular vs Back-Scattered Reflection 16
- Imaging in the ORBSI-CAN 16
- Map Colours Conventions 16
- Analysis of the Normal Eye by the ORBSI-CAN Map 17
- Analysis of Several Condition by the Orbscan Map 17
- Primary Posterior Corneal Elevation 17
- Iatrogenic Keratectasia 19
- Presbyopic LASIK 20
- ZYOPTIX Laser ... 21
- Cataract Surgery 21
- Microphakonit (Cataract Surgery through a 0.7 mm tip) 21

Chapter 3: Wavefront and Aberrometry Analysis

Rafael I. Barraquer, MD, PhD; Andrés Picó, OD, MD

- The Ray Aberrations 23
 - Monochromatic Aberrations 24
 - Chromatic Aberrations 25
- Wavefronts and Wavefront Aberrations 26
The Zernike Expansion 27
The Aberrations in the Normal Eye 29
Wavefront Measuring and Aberrometry 29
 Historical Background 29
 Outgoing Reflection Aberrometry (Hartmann-Shack) 30
 Retinal Imaging Aberrometry (Tscherne) 32
 Sequential Retinal Ray Tracing Aberrometry (iTrace) 33
 Ingoing Wavefront Adjustable Refractometry (Spatially Resolved Refractometer) 34
 Double Pass Aberrometry (Dynamic Skiascopy) 35
 Advantages and Limitations of the Different Aberrometry Systems 36
Wavefront Analysis, Optical Quality, and Visual Performance 37
 Quality Measures in the Spatial Domain (PSF, LSF, Strehl ratio) 37
 Quality Measures in the Contrast Domain (MTF, PTF, OTF) 38
 Wavefront Mapping Options 39
 The Root Mean Square (RMS) Error and Related Metrics 40

Chapter 4: In-vivo Micromorphology of the Ocular Coats – Confocal Microscopy Principles and Clinical Applications 47
 Prof. Dr. med. R. E. Guthoff, MD.; Joachim Stave, MD.

 Principle of In-vivo Confocal Microscopy Based on the
 Laser-Scanning Technique 47
 Slit-Scanning Techniques 48
 Fundamentals of Image Formation in In-Vivo Confocal Microscopy 50

 General Anatomical Considerations 51
 In-vivo Confocal Laser-Scanning Microscopy 52
 Confocal Laser-Scanning Imaging of Normal Structures 53
 Epithelial Layer 54
 Langerhans’ Cells 54
 Corneal Nerves 55
 Bowman’s Membrane 56
 Stroma 56
 Descemet’s Membrane 57
 Endothelial Membrane 57
 Limbal Region 57

 Clinical Findings 59
 Dry Eye 59
 Meesmann’s Dystrophy 59
 Epithelium in Contact Lens Wearers 60
 Epidemic Keratoconjunctivitis 62
 Acanthamoeba Keratitis 63
 Corneal Ulcer 63
 Slit-Lamp Photography 64
 Confocal Microscopy 64
 Refractive Corneal Surgery 64

Future Developments 65

Chapter 5: The Role of Computarized Optic Nerve Campimetry in the Early Diagnosis of Glaucoma 71
 Jerome C. Ramos-Esteban, MD

 The Reticulogeniculate Pathways 72
 A. Koniocellular (K) Pathway 72
 B. Magnocellular (M) Pathway 72
 C. Parvocellular (P) Pathway 72

 Testing the Reticulogeniculate Pathways 72
 A. Short-wavelength Automated Perimetry (SWAP) 72
 1. Technical Characteristics 73
 2. Testing Considerations 73
Diagnostic and Imaging Techniques in Ophthalmology

3. Clinical Correlations 74
B. Frequency-Doubling Perimetry (FDP)
 1. Technical Characteristics 74
 2. Testing Considerations 74
 3. Clinical Correlations 74
C. High Band-Pass Resolution Perimetry
 1. Technical Characteristics 74
 2. Testing Considerations 74
 3. Clinical Applications 74

Chapter 6: Optical Coherence Tomography (OCT) and Retinal Tomography in Glaucoma 77
Tarkan Mumcuoglu, MD.; Gadi Wollstein, MD.; Joel S. Schuman, MD.

Optical Coherence Tomography (OCT) 77
What is OCT? 77
Importance of Nerve Fiber Layer 78
Interpretation of OCT 78
Retinal Tomography 82
Interpretation of HRT 83

Chapter 7: Fluorescein and Indocyanine Green Retinal Angiography 87
J. Fernando Arevalo, MD FACS.; Dario Fuenmayor-Rivera, MD.;
Juan G. Sanchez, MD.; Renaldo A. Garcia, MD.; Lihteh Wu, MD.

Fluorescein Angiography 87
Properties of Fluorescein Dye 87
Adverse Reactions to Fluorescein Dye 88
Normal Fluorescein Angiogram 88
Abnormal Fluorescein Angiographic Patterns 89
Indocyanine Green Angiography 90
Properties of Indocyanine Green 91
Adverse Reactions to Indocyanine Green 91
Normal Indocyanine Green Angiogram 92
Interpretation of Fluorescein and Indocyanine Green Angiography
 of Selected Pathological Retinal Conditions 92
 Retinal Angiomaticous Proliferation 95
 Intraocular Tumors 96
 Chorioretinal Inflammatory Syndromes 98

Chapter 8: Ultrasonography within the Framework of Ophthalmologic Differential Diagnosis 101
Prof. Dr. med. R. F. Guthoff, MD.; Dr. rer. nat. Oliver Stacks, PhD.

Ophthalmic Ultrasonography - Past, Present and Future 101
Examination Techniques 103
Recommendations for a Rational Sequence of Examinations 103
 The Examination Procedure 103
 Principles of Obtaining the Optimal Ultrasonogram 104
 Spontaneous Motions as a Diagnostic Sign 104
 The "Critical Moment" Decides 104
 The Three-Dimensional Image 105
The Integration of B-Mode Doppler Instruments (Duplex Scanner) 107
Ultrasound Biomicroscopy 108
3D Ultrasound Biomicroscopy 109
Practical Approaches based on Ultrasonography 110
The Red Eye 110
Blurred Disk Margins - Elevation of the Optic Nerve head 112
Choroidal Folds 115
Leukokoria 116
Contents

Vitreous Hemorrhage 118
Examination before a Vitrectomy 119
Exophthalmus 121
Deficits in Ocular Motility 123
 Myogenic Deficits of Ocular Motility 123
Anterior Segment Space Occupying Lesions 125
Chamber Angle Abnormalities of Questionable Origin 126
Accommodative Artificial Intraocular Lenses – Contributions of Ultrasonography 127
 Streching Device 128

Chapter 9: Imaging of the Eye with Very High Frequency Ultrasound 133
D. Jackson Coleman, MD, FACS., Ronald H. Silverman, PhD,
Harriet O. Lloyd, M.S., Mark J. Rondeau

Principles and Physics 133
Clinical Evaluation 134
Cornea 135
Iris 136
Glaucoma 137
Ciliary Body 139
Hypotony 139
Trauma 140
Intraocular Lens Sizing 141
Advances in Ophthalmic Ultrasound Imaging 141

Chapter 10: Optical Coherence Tomography (OCT) for Exploring the Anterior Segment of the Eye 145
G. Baikoff, MD.

The Anterior Chamber OCT ("VisanteTM" Developed by Carl Zeiss Meditec) 146
Applications for Exploring the Anterior Segment with the OCT 146
 a. Static Measurement of the Anterior Segment 146
 b. Dynamic Evaluation of the Anterior Segment 147
 c. Evaluation of the Crystalline Lens with the AC OCT 147
 d. Pseudophakic Artificial Crystalline Lens 148
 e. Phakic Implants 148
 f. The Cornea 148
 g. Glaucoma 150
Conclusions and the Future of Anterior Segment OCT Exploration 150

Chapter 11: Optical Coherence Tomography 153
Soosan Jacob, MS, DNB, FRCS, MNAMS.; Sunita Agarwal, MS, DO.;
Athiya Agarwal, MD. DO., Aman Agarwal, MS, FRCS, FRCOphth

Principle of OCT 153
Color Coding in OCT 154
Interpretation of OCT of the Normal Retina 154
Interpretation of OCT of the Optic Nerve Head (ONH) 155
Scanning Protocols 155
Circumpapillary OCT Scans 155
Radial Scans Through the Optic Nerve Head 155
Macular Raster Scans 155
Macular Radial Scans 155
Quantitative Analysis Algorithms 156
Retinal Thickness Measurement 156
Nerve Fibre Layer Thickness Measurement and Analysis 156
Optic Nerve Head Analysis 156
Retinal Topography 156
OCT in Different Situations 156
Diagnostic and Imaging Techniques in Ophthalmology

Chapter 12: Visual Evoked Potential: Clinical Applications

Linda Semela, MD, Thomas R. Hedges MD

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Visual Evoked Potential</td>
<td>165</td>
</tr>
<tr>
<td>Method</td>
<td>165</td>
</tr>
<tr>
<td>Ophthalmic Applications of Conventional VEP Recording</td>
<td>166</td>
</tr>
<tr>
<td>1. Retinal Disease Versus Optic Nerve Disease</td>
<td></td>
</tr>
<tr>
<td>Optic Neuritis</td>
<td>166</td>
</tr>
<tr>
<td>Ischemic Optic Neuropathy</td>
<td>166</td>
</tr>
<tr>
<td>Compensative Optic Neuropathy</td>
<td>166</td>
</tr>
<tr>
<td>Retrochiasmal Lesions (Hemifield VEP Testing)</td>
<td>167</td>
</tr>
<tr>
<td>Albinism</td>
<td>167</td>
</tr>
<tr>
<td>VEP in Children</td>
<td>167</td>
</tr>
<tr>
<td>Nonorganic Visual Field Loss</td>
<td>168</td>
</tr>
<tr>
<td>Multifocal Visual Evoked Potential (mfVEP)</td>
<td>168</td>
</tr>
<tr>
<td>Method</td>
<td>168</td>
</tr>
<tr>
<td>Ophthalmic Applications of mfVEP Recording</td>
<td>169</td>
</tr>
<tr>
<td>Retinopathy</td>
<td>169</td>
</tr>
<tr>
<td>Glaucoma</td>
<td>170</td>
</tr>
<tr>
<td>Ischemic Optic Neuropathy</td>
<td>170</td>
</tr>
<tr>
<td>Optic Neuritis</td>
<td>170</td>
</tr>
<tr>
<td>Compensative Optic Neuropathy</td>
<td>171</td>
</tr>
<tr>
<td>Pituitary Adenoma</td>
<td>172</td>
</tr>
<tr>
<td>Retrochiasmal Lesions</td>
<td>172</td>
</tr>
</tbody>
</table>

Chapter 13: Electoretinogram and Electro-oculogram

Brijnath N. Swamy, MBBS (Hons) M Med (Clin Epi), Suresh K. Pandey, MD

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrophysiology in Ocular Diseases</td>
<td>175</td>
</tr>
<tr>
<td>Electrophysiology of the Retina</td>
<td>175</td>
</tr>
<tr>
<td>Electoretinogram</td>
<td>176</td>
</tr>
<tr>
<td>Clinical uses of ERG</td>
<td>176</td>
</tr>
<tr>
<td>Congenital Nystagmus</td>
<td>177</td>
</tr>
<tr>
<td>Rod/Cone Dystrophies</td>
<td>178</td>
</tr>
<tr>
<td>Distinguishing Progressive from Non-progressive Retinal Degenerations</td>
<td>178</td>
</tr>
<tr>
<td>RP Screening</td>
<td>178</td>
</tr>
<tr>
<td>ERG in CSNB</td>
<td>178</td>
</tr>
<tr>
<td>Oguchi’s Disease</td>
<td>178</td>
</tr>
<tr>
<td>Bull’s Eye Maculopathy</td>
<td>178</td>
</tr>
<tr>
<td>Vascular and Inflammatory Retinopathy</td>
<td>178</td>
</tr>
<tr>
<td>Toxicity</td>
<td></td>
</tr>
<tr>
<td>Focal ERG</td>
<td>178</td>
</tr>
<tr>
<td>Multifocal ERG</td>
<td>178</td>
</tr>
<tr>
<td>Pattern Electoretinogram</td>
<td>179</td>
</tr>
<tr>
<td>Early Receptor Potential</td>
<td>179</td>
</tr>
<tr>
<td>Oscillatory Potentials</td>
<td>179</td>
</tr>
<tr>
<td>ERG and Visual Adaptation</td>
<td>179</td>
</tr>
<tr>
<td>ERG and Spectral Sensitivities</td>
<td>179</td>
</tr>
<tr>
<td>Electro-Oculogram</td>
<td>180</td>
</tr>
<tr>
<td>ERG Usually Abnormal in Conditions in which EOG is also Abnormal with 4 Exceptions</td>
<td>180</td>
</tr>
<tr>
<td>Other uses of EOG</td>
<td>180</td>
</tr>
<tr>
<td>Visual Processing Pathways</td>
<td>180</td>
</tr>
</tbody>
</table>