Contents

1. Principles of Optical Coherence Tomography-Angiography 1
 Bruno Lumbroso, Marco Rispoli
 Limitations of Optical Coherence Tomography-Angiography 2
 Limitations of Optical Coherence Tomography 2
 Retinal Fluorangiography and Optical Coherence Tomography-Angiography 3

2. Optical Coherence Tomography-Angiography: New Clinical Terminology 5
 James G Fujimoto, Bruno Lumbroso, Marco Rispoli
 Angio-OCT Clinical Terminology 5

3. Split-Spectrum Amplitude-Decorrelation Angiography 8
 David Huang, Yali Jia

4. Solving the Practical Problems of Optical Coherence Tomography-Angiography 10
 Marco Rispoli, Bruno Lumbroso
 Mistakes to be Avoided 10

5. Optical Coherence Tomography-Angiography of a Normal Retina:
 The Anatomy of Blood Supply in the Retina 12
 Maria Cristina Savastano, Bruno Lumbroso, Marco Rispoli
 Posterior Pole 12
 Macular Area 12
 Arteries and Retinal Veins 12

6. Analysis and Synthesis: Analysis and Interpretation of a Pathological
 Optical Coherence Tomography-Angiography 16
 Bruno Lumbroso, Marco Rispoli
 Analytic Steps 16
 Analysis of Neovascular Membranes 21
 Synthesis 22

7.1 Clinical Applications: Aspects of OCT SSADA Angiography in Eye Disorders 23
 Bruno Lumbroso, Marco Rispoli, Maria Cristina Savastano, Adil El Maftouhi,
 Leonardo Mastropasqua, Luca Di Antonio, Giovanni Staurenghi
 Age-Related Retinal Anomalies 23
 Retinal Anomalies and Coat’s Disease 23
 Retinal Anomalies in Angiomasosis 24
 Retinal Superficial Anomalies in Macular Pucker 25
 Macroaneurysm 25
Diabetic Patients without Retinopathy 30
Branch Retinal Vein Occlusions 30
Recent or Long-Lasting Retinal Ischemias 32
Diabetic Retinopathy 35
Proliferative Diabetic Retinopathy 45
CNV: Neovascular Membranes in ARMD 47
Neovascular Membranes in Myopic Eyes 48
Idiopathic Polypoidal Choroidal Vasculopathy 49
Geographic or Atrophic Macular Degeneration 59
Optic Disk Disorders 59

7.2 Clinical Applications: Optical Coherence Tomography-Angiography of Choroidal Neovascularization in Age-Related Macular Degeneration 60
Yali Jia, David Huang

8. Optical Coherence Tomography-Angiography of Optic Disk and Peripapillary Retinal Perfusion in Glaucoma 64
Yali Jia, David Huang

9. Fluorescein Angiography and Optical Coherence Tomography-Angiography: Advantages and Disadvantages 68
Bruno Lumbroso, Marco Rispoli
General Fluorangiography Advantages 68
General Fluorangiography Disadvantages 68
Fluorangiography Imaging Advantages 68
General Angio-OCT Disadvantages 69
General Advantages of Angio-OCT Imaging 69
Angio-OCT Imaging Advantages 69
Angio-OCT Disadvantages 69
Other Non Invasive Techniques 70

10. Reporting an Optical Coherence Tomography-Angiography 71
Marco Rispoli
Analytic Steps 71
Case Reports 71

11. Future Ultrahigh Speed Swept-Source OCT Technology and OCT-Angiography 75
Nadia K Waheed, Woo Jhon Choi, Jay S Duker, James G Fujimoto
Swept-Source Optical Coherence Tomography for Ultrahigh Speeds 75
Optical Coherence Tomography-Angiography 77
Imaging the Choriocapillaris 77
Optical Coherence Tomography-Angiography in Diabetes 79
Optical Coherence Tomography-Angiography in Dry Age-Related Macular Degeneration 81

Index 85
Introduction

In the last few years, structural and functional optical coherence tomography (OCT) technology has seen new and revolutionary developments. The most important of which is arguably an OCT angiography (Angio-OCT). Angio-OCT is already playing an important role in clinical ophthalmology as a new, non invasive and dyeless diagnostic tool, which serves as an adjunct to, or even a replacement for fluorescein and indocyanine green (ICG) angiographies. Angio-OCT is bringing multiple technical and clinical improvements in the study of retinal diseases, glaucoma and optic nerve disorders. It enables rapid, high-resolution visualization of vascular structure in three dimensions as well as ease of repeated imaging.

In the Clinical Guide to Angio-OCT (Non Invasive, Dyeless OCT Angiography), we offer a step-by-step guide for interpreting clinical images and data acquired by Angio-OCT. In this book, we present a logical method for interpreting ophthalmic images. The first phase is analytic. The second phase combines elementary components to synthesize the data, allowing an accurate diagnosis and treatment decision. We also update OCT terminology in order to have a standardized approach for assessing Angio-OCT features. The book explains similarities and differences between this new imaging method, and the classical fluorescein and ICG angiographies. Very soon new advances in technology will further improve Angio-OCT imaging, making day-to-day clinical work easier. We trust the book will help ophthalmologists, residents, ophthalmic technicians and optometrists to understand and appreciate the new possibilities offered by the latest Angio-OCT imaging technologies.

Bruno Lumbroso
David Huang
Yali Jia
James G Fujimoto
Marco Rispoli