Contents

1. Hazards in the Clinical Biochemistry Laboratory 1
 Hazards from Dangerous Chemicals 1
 Infection Hazard 2
 First-Aid and Emergency Treatment in the Laboratory 4

2. Specimen Collection and Preservation 7
 Taking Care of the Intra- and Extra-laboratory Factors for Reliable Results 7
 Collection and Preservation of Biological Fluids 9
 Method of Taking Blood Specimen and Separating the Serum Aseptically 9
 Precautions for Taking Blood Sample 10
 Anticoagulants Used in Biochemical Analysis 11
 Preservation, Storage and Transport of Blood Sample 13

3. Quality Control in Clinical Laboratory 19
 To Assess the Validity of Results on Patient Specimens 19
 Type of Material Used for Quality Control 19
 Evaluation of QC Results 20
 Target Average Value of Quality Control Pool 20
 Temporary Target Average and Final Target Average 21
 Frequency of Analysis of Quality Control Sample 21
 Calibration and Calibration Materials 24

4. Units and Reference Values 30

5. Review of Analytical Chemistry 38
 Concentration 38
 Dilution Problems 39
 Plasma Osmolality 39

6. Determination of pH 42
 pH and Significance 42
 Buffers 42
 Operation of pH Meter 43

7. Tests for Carbohydrates 45
 Test for Carbohydrates 45
 Reaction of Disaccharides 48
 Reactions of Polysaccharides 48
 Scheme for Identification of Unknown Carbohydrates 50

8. Precipitation Reactions for Proteins 52
 Precipitation by Salts 52
 Isoelectric Precipitation 53
 Precipitation by Organic Solvents 53
 Precipitation by Acidic Agents 53
 Precipitation by Heavy Metal Ions 53
 Precipitation by Heat and Acid 53

9. Color Reactions for Proteins 55
 General Reactions of Proteins 56
 Scheme for Identification of an Unknown Protein 59
10. Tests for Lipids
- Qualitative Tests of Lipids 60
- Test for Unsaturation (Bromination Test) 61
- Qualitative Tests for Glycerol 61
- Qualitative Tests of Cholesterol 62

11. Gastric Juice Analysis
- Qualitative Analysis of Gastric Juice 63
- Determination of Free and Total Acidity 64
- Interpretation 65

12. Physical Examination of Urine
- Specimen Collection and Preservation 67
- Composition of Normal Urine 68
- Physical Examination of Urine 68

13. Chemistry of Normal Urine
- Tests for Inorganic Constituents 71
- Tests for Organic Constituents 72

14. Abnormal Constituents of Urine
- Abnormal Constituents of Urine 73

15. Urinary Ascorbic Acid
- Ascorbic Acid Saturation Test 81
- Determination of Ascorbate by Titration with 2,6-Dichlorophenolindophenol 82

16. Urinary Reducing Sugars
- Benedict's Method for Urinary Reducing Sugars 84

17. Hemoglobin and its Derivatives
- Detection of Hemoglobin and its Derivatives 88
- Spectroscopic Study of the Pigments 88
- Preparation of Hemin Crystals 90
- Quantitative Determination of Hemoglobin 90
- Hemoglobin and Related Chromoprotein 91

18. Spectral Techniques
- Absorption Spectroscopy 94
- Standard Curve (Calibration Curve) 96
- Type of Instruments 96
- Essential Parts of Photo-colorimeter 97

19. Automation
- Classification of Analyzers 102
- Profiles of Analyzers 103
- Benefits of Analyzers 106

20. Liver Function Tests
- Excretion 107
- Intermediary Metabolism 107
- Serum Enzymes in Liver Diseases and Jaundice 107
- Synthesis 108
- Detoxification 108
- Hepatitis Markers 109
- Hepatitis A Virus (HAV) 110
- Hepatitis B Virus (HBV) 110
Hepatitis Be Antigen (HBeAg) 111
Antibodies to Hepatitis Be Antigen (Anti-HBe) 111
Antibody to Hepatitis B Core Antigen (Anti-HBc) 111
Hepatitis B Virus-DNA (HBV-DNA) 111
Hepatitis C Virus (HCV) 111
Hepatitis D Virus (HDV) 112
Hepatitis Delta Antibody (Anti-HDV) 112
Hepatitis E Virus 112

21. Cardiac Function Tests 116
 Test for Coronary Heart Disease Risk Evaluation 116
 Diagnostic Indicator of Myocardial Infarction 117

22. Kidney Function Tests 130
 Tests of Glomerular Function 130
 Tests of Tubular Function 131

23. Pancreatic Function Tests 138
 Functions of the Pancreas 138
 Tests in Pancreatic Diseases 139

24. Thyroid Function Tests 145
 Current Methods for Measuring Thyroid Related Hormones 145
 Enzyme Immunoassay for the Quantitative Determination of Thyrotropin (TSH) and Total T4 and T3 146
 Assessment of Thyroid Function and Interpretation 146

25. Tumor Markers 151
 Overview of Role of Laboratory Tests 151
 Classes of Biochemical Used as Tumor Markers 152
 Types of Analytes Used 152
 Other Proteins 154
 Methodology Used for Tumor Markers 156

26. Serum Total Proteins and Albumin–Globulin Ratio 159
 Serum Proteins Investigation 159
 Serum Protein Estimation by Biuret Method 159
 Determination of Albumin–Globulin Ratio 160

27. Serum Alkaline and Acid Phosphatase 168
 Alkaline Phosphatase 168
 Serum Alkaline Phosphatase Estimation 168
 Photometric Determination of Alkaline Phosphatase 169
 Acid Phosphatase 170

28. Serum Aminotransferases (Transaminases) 174
 Determination of Aminotransferases 174

29. Serum Amylase 178
 a-Amylase 178
 Serum Amylase Estimation 178
 Reagents 178
 Amylase (CNPG3 Method) 179
 Increased Plasma Amylase 179
 Macroamylasemia 180
 Decreased Plasma Amylase 180
30. Serum Bilirubin
- Determination of Serum Bilirubin 181
- Determination of Total and Direct Bilirubin 182
- Determination of Serum Bilirubin by the Method of Jendrassik and Gorf 182
- Retention Jaundice (Unconjugated Hyperbilirubinemia) 183
- Regurgitation Jaundice 184
- Mixed Hyperbilirubinemia 184

31. Blood Urea and Urea Clearance
- Choice of the Sample 189
- Determination of Blood Urea 189
- Nonenzymatic Method (Diacetyl Monoxime Method, DAM Method) 190
- Urinary Urea 192

32. Serum Creatinine and Creatinine Clearance
- Determination of Serum Creatinine (Jaffe's Alkaline Picrate Method) 194
- Estimation of Creatinine (Jaffe's Reaction without Deproteinization, Kinetic Method) 195
- Creatinine Clearance 196

33. Serum Uric Acid
- Determination of Serum Urate (Caraway's Method) 199
- Determination of Urate in Urine 202

34. Blood Sugar
- Choice of Blood Specimen 204
- Glucose Oxidase Peroxidase Method 205
- Glucose Hexokinase Method 205
- Alkaline Copper Reduction Method 205
- Ferricyanide Method 207
- Classification of Hyperglycemia Disorders 208
- Causes of Insulin Resistance 209

35. Glucose Tolerance Test
- Oral Glucose Tolerance Test 217
- Extended Oral Glucose Tolerance Test (EGTT) 220
- Cortisone Stressed Glucose Tolerance Test 220
- Frequently Sampled Intravenous Glucose Tolerance Test (FSIGT) 220
- Factors Affecting GTT 220
- Some Special Tests for Diagnosis of Diabetes 221

36. Blood Lipids
- Ultracentrifugation and Electrophoresis 226
- Precautions for Taking Blood Samples for Lipid Analysis 226
- Cholesterol 227
- Nonenzymatic Method for Cholesterol Estimation 227
- Enzymatic Method for Cholesterol Estimation 228
- Determination of HDL Cholesterol 230
- Triglycerides 232

37. Serum Inorganic Phosphorus
- Phosphorus in Blood 247
- Determination of Inorganic Phosphate in Serum 247
- Phosphate Excretion 250

38. Serum Calcium
- Determination of Total Serum Calcium 251
- Estimation of Total Serum Calcium Dye O-Cresolphthalein Complexone (Colorimetric End-Point Method) 251
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.</td>
<td>Serum Chloride</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>Choice of Specimen</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>Determination of Serum Chloride</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>Urine Chloride</td>
<td>258</td>
</tr>
<tr>
<td>40.</td>
<td>Cerebrospinal Fluid</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>Examination of CSF</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>Determination of Total Protein</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>Determination of Globulins</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>Determination of Glucose</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Determination of Chloride</td>
<td>263</td>
</tr>
<tr>
<td>41.</td>
<td>Analysis of Foodstuffs</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>Animal Products</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>Vegetable Products</td>
<td>267</td>
</tr>
<tr>
<td>42.</td>
<td>Chromatography</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>Adsorption Chromatography</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>Preparation of Samples</td>
<td>271</td>
</tr>
<tr>
<td>43.</td>
<td>Electrophoresis</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>Types of Electrophoresis</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>Types of Electrophoresis Used for Separation of Serum Proteins</td>
<td>276</td>
</tr>
<tr>
<td>44.</td>
<td>Flame Photometer</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>Principle</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>Types of Flame Photometers</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>Various Parts of Flame Photometer</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>Sample Dilution</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>Care and Maintenance of Flame Photometers</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>Atomic Absorption Spectroscopy</td>
<td>283</td>
</tr>
<tr>
<td>45.</td>
<td>Blood Gas Analyzer</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>Calibration</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>Precautions</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>Type of Possible Acid-Base Disturbances</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>Combined Respiratory and Metabolic Acidosis</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>Combined Respiratory and Metabolic Alkalosis</td>
<td>289</td>
</tr>
<tr>
<td>46.</td>
<td>Body Fluids and their Composition</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>Anion Gap</td>
<td>295</td>
</tr>
<tr>
<td>47.</td>
<td>Immunology</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>The First Level of Detecting Interaction of Antibodies and Antigens</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Precipitation</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Agglutination</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>Second Level of Detecting Interaction of Antibodies and Antigens</td>
<td>306</td>
</tr>
<tr>
<td></td>
<td>Antigen–Antibody Reactions Using Fluorescent Labels</td>
<td>306</td>
</tr>
<tr>
<td></td>
<td>Radioimmunoassay Methods</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>Immunoassays Using Enzymes-Linked Antibody or Antigen, Enzyme-Linked Immunosorbent Assay (ELISA)</td>
<td>308</td>
</tr>
<tr>
<td>48.</td>
<td>Isotopes in Clinical Chemistry</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>Basic Structure of an Atom</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>Units of Radioactivity Measurements</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>Principles of Radiation and Radioactivity</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td>Measurement of Radioactivity</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>Applications of Radioisotopes</td>
<td>315</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>49</td>
<td>Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Structure and Function of HIV Gene</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Specific Tests</td>
<td>319</td>
</tr>
<tr>
<td>50</td>
<td>Therapeutic Drug Monitoring</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>Purpose for Therapeutic Drug Monitoring (TDM)</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>Commonly Monitored Drugs</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>Laboratory Estimation of Drugs</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>Conditions for Monitoring Antiepileptic Drugs</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>Time for Monitoring Drugs</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>Application of Therapeutic Ranges for Antiepileptic Therapies</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>TDM Technologies</td>
<td>330</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
<td>335</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>339</td>
</tr>
</tbody>
</table>